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SEMPAI: a Self-Enhancing
Multi-Photon Artificial Intelligence for
Prior-Informed Assessment of Muscle
Function and Pathology

The Self-Enhancing Multi-Photon AI
(SEMPAI) that is designed specifically for
basic laboratory research with microscopy
is presented. It allows to integrate hy-
potheses and uses meta-learning in a
biologically interpretable configuration
space for knowledge discovery. SEM-
PAI is applied to a large database of
multi-photon microscopy images of
single muscle fibers to gain a deeper
understanding of structure–function
relationships and pathologies.
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Deep learning (DL) shows notable success in biomedical studies. However,
most DL algorithms work as black boxes, exclude biomedical experts, and
need extensive data. This is especially problematic for fundamental research
in the laboratory, where often only small and sparse data are available and the
objective is knowledge discovery rather than automation. Furthermore, basic
research is usually hypothesis-driven and extensive prior knowledge (priors)
exists. To address this, the Self-Enhancing Multi-Photon Artificial Intelligence
(SEMPAI) that is designed for multiphoton microscopy (MPM)-based
laboratory research is presented. It utilizes meta-learning to optimize prior
(and hypothesis) integration, data representation, and neural network
architecture simultaneously. By this, the method allows hypothesis testing
with DL and provides interpretable feedback about the origin of biological
information in 3D images. SEMPAI performs multi-task learning of several
related tasks to enable prediction for small datasets. SEMPAI is applied on an
extensive MPM database of single muscle fibers from a decade of
experiments, resulting in the largest joint analysis of pathologies and function
for single muscle fibers to date. It outperforms state-of-the-art biomarkers in
six of seven prediction tasks, including those with scarce data. SEMPAI’s DL
models with integrated priors are superior to those without priors and to
prior-only approaches.

A. Mühlberg, P. Ritter, S. Nübler, D. Schneidereit, M. Haug,
S. Schürmann, O. Friedrich, L. Kreiss
Institute of Medical Biotechnology
Department of Chemical and Biological Engineering
Friedrich-Alexander University Erlangen-Nuremberg
Paul-Gordan-Str. 3, 91052 Erlangen, Germany
E-mail: alexander.mueale.muehlberg@fau.de

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202206319

© 2023 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202206319

1. Introduction

Artificial intelligence (AI) and especially
deep learning (DL) is experiencing great
success in the classification of digital im-
age data. These algorithms are nowadays
regularly used for research in the medical
field for automated diagnostics in macro-
scopic imaging, such as computed tomog-
raphy (CT) or magnetic resonance imaging
(MRI), for example to estimate the effec-
tiveness of radiation therapy,[1] to automat-
ically phenotype COPD,[2] or to segment
organs.[3]

For fundamental research in the labora-
tory (lab) and in animal models, however,
the automation aspect is much less relevant.
Instead, lab research is more concerned
with basic discoveries that can lead to a bet-
ter understanding of pathology or function.
Specifically for animal models and funda-
mental research with microscopy, the mere
automation of disease detection does not
add much value, since trained DL algo-
rithms require translation to humans. In
addition, lab experiments are often of small
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sample size and labels are sparse, thus rather data-hungry DL
should not be employed to mitigate overfitting, and the lab re-
searcher therefore has to rely on hypothesis-based research, of-
ten in combination with statistics. However, it would be help-
ful to use hypotheses, while having a system that can recog-
nize patterns independently, e.g., via convolutional neural net-
works (CNN) that identify relevant features automatically. The
field of optical microscopy, in particular, has already benefited
from a broad variety of AI applications,[4] such as automation,[5,6]

segmentation,[7] and image quality (IQ) enhancement including
optimal illumination,[8] emitter localization in super-resolution
microscopy,[9] or image restoration.[10] However, current research
mostly covers AI optimization of the microscope settings and
is less focused on the hypothesis-based approach of small-scale
experiments for biological knowledge discovery. A scientist con-
ducting basic research in the lab is also often unfamiliar with the
selection of an appropriate DL architecture and associated hyper-
parameter tuning, which can also be a limiting factor for the use
of AI in the lab.

All of these points justify the need for an AI that is designed
specifically to meet the needs of a biomedical lab researcher. To
understand how this can be achieved, we briefly introduce two
cutting-edge areas of research: meta-learning and the integration
of prior knowledge.

Meta-learning, or “learning to learn”, analyzes that condi-
tions must be given to be able to effectively learn a specific
task. This includes the relatively new field of neural architec-
ture search (NAS),[11] with the goal to automatically identify
a suitable NN architecture for a given problem. Meta-learning
might replace the time-consuming trial-and-error process of
manual architecture search and may not only provide com-
petitive performance, but also solutions with particularly desir-
able properties, such as curiosity.[12] On the downside, NAS,
and more generally meta-learning, are computationally expen-
sive approaches, although a variety of techniques are devel-
oped to decrease time and associated costs.[13] Recently, a novel
meta-learning approach for segmentation problems in biomed-
ical imaging gained a lot of attention: nnU-Net3. nnU-Net opti-
mizes NN architecture and hyperparameters together with rule-
based image processing operations (normalization, resampling
etc.), with the eponymous U-Net serving as the base NN ar-
chitecture. This approach outperformed most prevailing meth-
ods for many automated segmentation problems in biology and
medicine.[3]

And although DL has shown its strengths for big data, e.g.,
for automated classification of images in the world wide web,
for fundamental medical research with limited data sets, meth-
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ods based on prior knowledge can show competitive performance
for describing or predicting a pathology.[14] Providing prior bio-
logical knowledge, or in brief “priors”, to the learning algorithm
as a baseline instead of starting from scratch, therefore, seems
plausible. Another common drawback of many DL systems is
the lack of explainability. A large number of methods, such as
DeepSHAP,[15] are developed to highlight the image informa-
tion relevant for the decision-making process. However, a fun-
damental question posed by Rudin[16] was why the current re-
search focuses on post-hoc explanations of complicated models
rather than creating more interpretable models from the begin-
ning. Explainability can be increased by using priors, such as
established measurements or known biomarkers, in the learn-
ing process of a NN. Additionally, the integration of prior knowl-
edge in the form of known operators as NN layers was already
shown to stabilize the learning process by reducing the max-
imum error bounds.[17] Lastly, by integration of biological pri-
ors, human understanding and intuition about a problem can
be employed within AI research. Modern AI approaches for mi-
croscopy also already started to integrate prior knowledge of
imaging physics. For instance, the integration of physics knowl-
edge into the learning process of an AI helped with the technolog-
ical optimization of microscope- and software-components[18,19]

for enhanced IQ, and with digital staining of virtual fluores-
cence in label-free phase microscopy,[20] or Fourier ptychography
microscopy.[21]

Based on the considerations regarding an AI for the lab, and
the cutting-edge areas of meta-learning and prior-integration
discussed above, we present the Self-Enhancing Multi-Photon
Artificial Intelligence (SEMPAI) that is specifically designed to
integrate hypothesis-driven priors in a meta-learning approach
for fundamental research. SEMPAI as a general tool simultane-
ously identifies optimal data representation, degree of prior in-
tegration, and NN architecture for a given biomedical problem.
In contrast to the technologically-inspired optimization of mi-
croscope parameters for enhanced IQ, it performs biologically-
inspired meta-learning, i.e., the optimization in a biologically in-
terpretable configuration space, on already existing databases for
knowledge discovery. Additionally, SEMPAI utilizes multi-task
learning over different tasks to leverage common patterns shared
over all prediction tasks to also enable the prediction for small
and sparse data sets. Lastly, SEMPAI’s models that are trained on
a large joint database with different pathologies in animal mod-
els could then be used as foundation models,[22,23] and be fine-
tuned for, e.g., translation from ex vivo to in vivo experiments or
from animal models to humans. Summarizing, SEMPAI aims to
integrate the hypotheses of researchers and identify biologically
relevant information in experiments of low sample size, simulta-
neously serving as a generator of foundation models based on a
large database.

To demonstrate the value of this approach, we apply SEMPAI
to an extensive and unique multi-study data collection of 1,298 3D
second-harmonic generation (SHG) images from isolated mus-
cle fibers of different morphologic, genetic, pathologic, or func-
tional conditions. Images of the database were acquired with
label-free multiphoton microscopy (MPM), and functional pa-
rameters with highly automated robotized biomechatronics sys-
tems.
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2. Results

2.1. SEMPAI Method Overview

In the context of this publication, priors are handcrafted features,
i.e., either already known imaging biomarkers or novel features
that were developed based on the researcher’s hypotheses. Labels,
as usual, define the values to be learned and predicted.

SEMPAI simultaneously optimizes configurations of its three
main components: the prior integration, the data representation
(DaRe), and NN architecture and hyperparameters (NN settings).
This self-enhancement in a biologically interpretable configura-
tion space is logged, and its evaluation enables knowledge discov-
ery. The method is shown in Figure 1, the configuration space
in Table 1, an extended rationale and explanations for the con-
figuration space, as well as details about the implementation, in
Methods.

SEMPAI can choose from five different levels to integrate pri-
ors (or hypotheses). It can learn without priors (NoPriors), use
them as auxiliary tasks (AuxLosses), which results in a soft con-
straint to the learning problem1, integrate them as an additional
branch into the fully connected layer of the NN (Branches), or a
combination of both (AuxLosses&Branches). In the fifth configu-
ration (PriorsOnly), only priors are used in an integrated AutoML
method[24] for handcrafted features, i.e., without using the SHG
images and DL. To the best of our knowledge, the integration
within SEMPAI is the first attempt to combine current priors
(biomarkers) known in single fiber muscle research with ML.
Further extended explanations are provided in Methods.

The decisions by SEMPAI regarding DaRe indicate “how and
where” biological information can optimally be learned. For ex-
ample, SEMPAI analyzes whether 3D images are needed or
whether three regularly spaced representative slices (2.5D) are
sufficient and how large this spacing should be. Analogously,

Figure 1. SEMPAI method overview. For each iteration, termed trial, of-the-self-enhancement process, a data representation (DaRe) is selected that
represents the images either in 2.5D, i.e., by three regularly spaced slices, or in 3D. Then, decisions are made regarding the modification of the DaRe
such as downsampling or contrast enhancement. The selected DaRes are fed to a NN, and the NN architecture and its hyper-parameters are selected.
The level of prior integration is then chosen. SEMPAI decides, whether priors i) are not employed, ii) are used as auxiliary tasks for the NN training, iii)
are fed directly to the fully connected layer of the NN as branches, or iv) are used in both integration methods, i.e., a combination of (ii) and (iii). In
option v), the priors are the only input to an AutoML approach for handcrafted features. The resulting model of the trial is used to predict the labels on
the dev set. The performance of the model yields the meta-losses that guide SEMPAI’s configuration selection for the next trial. This process results in a
simultaneous self-enhancement of DaRe, NN architecture & hyperparameters and prior integration with increasing number of trials. Table 1 shows the
configuration space. Scale bar: 25 μm.
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Table 1. Configuration space. Decisions made by SEMPAI during self-enhancement process.

Data Representation Variants

Contrast Enhancement Yes: the MCLAHE algorithm is applied on the images No: No further enhancement after registration and resampling

Down-sampling Yes: Images are downsampled to 0.75μm voxel size
isotropically

No: No resampling, 0.5 μm isotropically

Augmentation Yes: Application of 3D augmentation such as Gaussian
noise, rotation, flipping, affine transformation

No: Original standardized images are used

Random Erasing Yes: Random regions of the image are erased No: Original standardized images are used

Volume/slice selection 3D: The whole 3D array of each sample is used 2.5D_1 2.5D_5 2.5D_10 2.5D_20

Center slice and 2 slices with 1, 5, 10 or 20 μm distance to the center slice are
selected

Prior Integration Variants

Method NoPriors AuxLosses Branches AuxLosses&Branches PriorsOnly

NN Settings Variants

Capacity 2D/3D EfficientNet B1-B6

Learning rate Cyclic (Yes/No) and in range [0.0001, 0.2]

Optimizer Adam or SGD with Nesterov moment

Momentum Momentum in range [0.9, 0.99]

Gradient Clipping Yes: gradients are clipped to the norm 1.0 No: NN gradients evolve freely

Batch Size 2.5D/3D: small (32/4); medium (64/8), large (128/16), XL [256/32], XXL (512/64)

Imbalance Sampling Yes: class distributions are re-balanced based on strata information of the initial train-dev-test
split. Sampling weights are estimated automatically

No: The original data distribution is fed
in the NN

SEMPAI provides information on the importance of downsam-
pling, which can help to estimate the required image resolu-
tion for a learning task. As a side effect, this feedback may also
have an impact on future studies. For instance, if SEMPAI finds
that larger pixel sizes are sufficient for a given task, future data
could be acquired in shorter scan times, increasing experimental
throughput.

For NN training, in addition to hyperparameter optimization,
SEMPAI selects one architecture variant from the base architec-
ture EfficientNet[25] that offers scaled variants with different ca-
pacity (B1 to B6) and for 2D or 3D, and has been shown to yield
competitively predictive performance with less DOF than alter-
native architectures.[25] Accordingly, this architecture allows rel-
atively fast training, making it advantageous for utilization with
time-consuming meta-learning. SEMPAI learns all tasks jointly
in a multi-task setup. Our hypothesis is that this enforces a se-
mantic regularization of the learning process, since systematic
differences unrelated to the biological origin, e.g., in IQ, are
less likely to be used for prediction. Instead, the use of related
muscle-specific patterns across different learning tasks is en-
forced. Multi-task learning further has the advantage that tasks
with small data can still be learned, as DOF are determined by in-
formation from similar tasks with more data.[26] Recent research
shows that this joint learning is preferable to the similar concept
of transfer learning.[27] In case of missing labels for either pri-
mary or auxiliary losses of a sample, no backpropagation occurs
during training for the corresponding model outputs, i.e., these
outputs are “masked” for that sample. This results in a sort of

interleaved learning, in which different tasks are learned in dif-
ferent batches. It also enables joint training without the need for
data imputation, thereby enabling effective analysis of sparse and
heterogeneous laboratory data. During NN training, all losses are
weighed against each other by uncertainty weighting.[28]

Data to be analyzed by SEMPAI are split into training (train),
development (dev) and test set (more details in 2.3). The train set
is used to train the NN, while the dev set is used to optimize SEM-
PAI’s decisions in the configuration space. The test set remains
unseen. The resulting model of each trial created on the train set
is applied for prediction of the labels on the dev set. The predic-
tive performance of the chosen model for each task is assessed
for the dev set. Those performances are used as meta-losses to
select the configurations for the next trial. SEMPAI uses NSGA-
II[29] multi-objective optimization for this selection, i.e., there is
not only one loss to be minimized, but the losses of all labels are
minimized independently.

For tasks with small data, i.e., pCa50 and passive force (Table 2
in the next Section 2.2), ML and especially DL are severely lim-
ited due to overfitting. Based on the identified associations of the
same priors with the investigated labels in previous studies,[30–34]

we hypothesize that muscle-specific learning tasks are related
and the mean predictive performance over all tasks may assist
SEMPAI to select an even more regularized model. Therefore, a
total meta-loss is introduced, which is a weighted sum of all meta-
losses for each task and provides an estimate of the model perfor-
mance over all tasks. This loss is not used for optimization, but
for selection of models for small data tasks (N<100).
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Table 2. Used multi-study data after standardization and exclusion of data
with inappropriate IQ. Please note that the total number of unique images
is not a sum of all above, since most images had information for multiple
labels, e.g., an image from mdx, where active force was available. Example
images for each of the included studies are shown in Supporting Informa-
tion 1. WT: wild type, C: classification, R: regression.

Label / Task Data set with
reference

Total number of
curated images

Inflammatory phenotype: Sepsis/WT, C A[30] 731

Dystrophic phenotype: mdx/WT, C B1[31], B2[31],
C[31], D[32]

567

Muscle type: Diaphragm/EDL, C D[32] 179

Active Force, R B1[31] 232

Active Force/pCa, R B1[31] 152

Passive (Restoration) Force, R C[31] 39

pCa50, R B2[31] 39

Total number of unique images 1,298

SEMPAI explains itself regarding i) decision-making during
the self-enhancement process (SEMPAI model-level explana-
tions) as well as regarding ii) the decision-relevant image pix-
els/voxels and priors of each sample (SEMPAI sample-level ex-
planations): i) For each task, based on the performed experiments
and their results, SEMPAI retrospectively fits a random forest
model to estimate its predictive performance from a given con-
figuration. Subsequently, the fitted model is fed in the SHAP
Tree Explainer[35] to estimate the impact of DaRe, NN settings,
and prior integration and identify configurations that yield mod-
els with good predictive performance. ii) For the sample-level
explanation of important image regions, SEMPAI utilizes Deep
SHAP.[15] In the case of prior integration method Branches or
combined AuxLosses&Branches, the method was extended to pro-
vide attribution of priors together with, and orthogonally to, the
attribution map of the image.

2.2. Database, Priors, and Labels

To apply SEMPAI, a database for an organ has to be fed in. With-
out compromising the general approach of the method, in this
section we present and describe the specific database analyzed
by SEMPAI. The standardization of this database is explained in
the next Section 2.3.

We retrospectively screened in-house experimental MPM data
of single muscle fibers acquired over more than a decade to ob-
tain a large database that includes a variety of biological prop-
erties with respect to muscle pathology and function. For these
data, we utilize current MPM imaging biomarkers as priors while
pathological and functional parameters serve as labels, which we
describe below.

A variety of muscle pathologies affect a structured muscle mor-
phology, leading to reduced function of the entire system. For
instance, Duchenne muscular dystrophy (DMD) results in an
overall loss of structural integrity in individual fibers, eventu-
ally leading to failure of respiratory and heart muscle that can be
life-limiting.[36] Besides chronic degenerative diseases like DMD,
also acute myopathies can result in disruptions of the myofib-

rillar structural alignment, as it has been shown in ongoing
sepsis.[30]

Function of muscle tissue is based on its passive mechanical
and its active force generation properties. Passive force parame-
ters are related to the visco-elastic behavior of the muscle. In con-
trast, active force parameters describe its intrinsic ability to gener-
ate force, e.g., represented by the physiological sensitivity to cal-
cium ions. Automated integrated biomechatronics systems, such
as the MyoRobot[37,38] or the MechaMorph system,[31] can measure
these active and passive parameters simultaneously to imaging
of the fiber. Both aforementioned systems consist of force trans-
ducers (FT) to measure force and voice coil actuators (VCA) to
perform axial movement with higher precision as compared to
stepper motors.[39] A combination of high-resolution label-free
SHG microscopy with biomechanical measurements of active
and passive force was recently demonstrated.[31] Through this,
correlations between morphological features derived from SHG
and functional properties acquired with FTs and VCAs were ex-
perimentally shown for individual muscle fibers from mdx and
wild type (WT) mice.

Table 2 shows the investigated learning tasks, i.e., the labels,
the corresponding original studies, and the number of samples
used. The extended variants, i.e., larger sample size, of the fol-
lowing studies are included in our database: A) For investigating
muscle atrophy during sepsis, samples from the extensor digito-
rum longus (EDL) of septic and WT mice were imaged and com-
plemented by active force recordings in EDL single fibers of the
same animal.[30] Sepsis is used here as a surrogate for the in-
flammatory phenotype. B1) Active force measurement and sub-
sequent SHG imaging at each force recording were carried out in
EDL single fibers from WT and mdx mice.[31] B2) Force record-
ings from a different image data set of EDL fibers to deduce the
Ca2+ sensitivity of the contractile apparatus, pCa50, as a measure
for the troponin-C Ca2+ sensor characteristics.[38,40] C) The same
setting was used to access passive force parameters on a differ-
ent set of animals.[31] D) Fixated single fibers and fiber bundles
from EDL and diaphragm in mdx and WT animals were imaged
to investigate structural differences between mdx and WT as well
as between the muscle types of EDL and diaphragm.[32] Here, the
mdx mice serves as a surrogate for the dystrophic phenotype.

The 3D images presented in this data set were generated
by label-free SHG microscopy. Compared to other, macroscopic
label-free imaging modalities, such as MRI,[41] CT,[42] or ultra-
sound,[43] SHG imaging provides sub-μm resolution to resolve
sarcomeres (≈2 μm in size), which is relevant to establish a
deeper understanding of the structure-function relationship and
the impact of pathologies on single muscle fibers.[44,45] From
these images, morphological image features were computed with
previously reported software.[46] In brief, these features include
the cosine angle sum (CAS) taken from selected 2D planes (2D-
CAS) and in 3D (3D-CAS), the vernier density (VD), the 3D sar-
comere length (3D-SL), and the cross-sectional area (CSA) of sin-
gle fibers. Since these features have already been shown to be
descriptive for a variety of rather specific remodeling patterns in
muscle research, related to aging, chronic degenerative or inflam-
matory myopathies,[33–34] we use them as priors.

A more elaborate explanation of the image acquisition, the
robotized biomechatronics system, and the extraction of priors
is provided in Methods.
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2.3. Cross-Study Data Standardization, Data Split, and
Performance Metrics

The workflow for data acquisition, standardization, and the re-
sulting data distribution after splitting in train, dev, and test set
is shown in Figure 2.

The original experiments were conducted by different exper-
imenters, with different imaging systems and parameters, re-
sulting in a high degree of data heterogeneity. Thus, standard-
ization is required to compare images from different studies ac-
quired under varying experimental conditions and during differ-
ent time periods. By standardization, the technical variance can
be minimized. In brief, the images are resampled to an isotropic
voxel size of 0.5 μm, slightly denoised via a median filter, and
the background, which is defined by Otsu’s thresholding of the
image, is set to zero. Then, the Multidimensional Contrast Lim-
ited Adaptive Histogram Equalization (MCLAHE) algorithm[47]

is applied for contrast enhancement of each muscle fiber. This
contrast-enhanced image is registered to a pre-selected fiber with
canonical orientation and fiber pattern by a rigid multi-scale reg-
istration, and the resulting transformation is applied to the non-
enhanced version. A mean image of the registered fibers is cre-
ated after setting all foreground voxels to one, which provides
the probability of presence for muscle fibers in each voxel. The
bounding box of voxels with probability >0.85 is generated (ex-
tent: 180 × 80 × 57 μm3) and applied to the images. This cropping
of images to relevant regions enables the use of DL models with
reduced degrees of freedom (DOF), which is advantageous for
our data regime. To allow a uniform comparison of the CSA be-
tween each of the individual experiments, we developed a method
that combines three different variants of CSA estimation to de-
tect outliers and to be more robust. Further fine-grained details
about the implementation of the standardization and the CSA
estimation are provided in Methods.

For our meta-learning, the standardized data are stratified and
grouped into train, dev, and test set (2/4, 1/4, 1/4). The grouping
prevents different images of single fibers extracted from the same
muscle bundle from being distributed over different sets, which
would result in information leakage. The stratification ensures
that the distribution in the respective sets is similar, thus, label
instances with rare occurrence are present in the train, dev, and
test sets. The label and prior data are normalized to a standard
score based on mean and standard deviation of the train set. The
predictive performance is given for the unseen test set (holdout)
as area under the curve (AUC) of the receiver operating charac-
teristic for classification tasks and as R2 for regression tasks.

2.4. SEMPAI as a Tool for Fundamental Knowledge Discovery

As described above, to explain its decision-making on the model-
level, SEMPAI computed the respective SHAP values of the sam-
ples and the mean absolute SHAP values over all samples to
quantify the association of the configuration space with the pre-
dictive performance. In addition, the stability of the analysis was
tested (see Methods). The results are shown in Figure 3A.

In five of seven investigated tasks, the level of prior integra-
tion was the most important decision. For the classification tasks
mdx, sepsis, and muscle type, the integration of prior knowledge

(or hypotheses) was especially important according to the mean
absolute SHAP values. While mdx and muscle type preferred the
soft constraint of priors as AuxLosses, the harder learning task
of predicting sepsis preferred a stronger integration of priors as
AuxLosses&Branches. Although selecting the level of prior integra-
tion was on average not the most important decision for learning
muscle function, the highest positive impact on predictive perfor-
mance was found with strong prior integration, namely Branches
and AuxLosses&Branches, for active and passive force. The results
for pCa50 are harder to interpret. According to the individual
SHAP values, the task preferred no prior integration or weak in-
tegration as AuxLosses but the pattern of the association is rather
complex. Further explanation, for instance, why a prior integra-
tion AuxLoss can be considered weaker than Branches, can be
found in Methods.

Most learning tasks, especially mdx and sepsis, benefited from
smaller NN capacity, indicating that fewer DOF were sufficient
for the complexity of the task and helped to avoid overfitting.

Reducing image resolution had a negative impact on five of
seven learning tasks, although at varying degrees, as indicated
by the SHAP values when employing down-sampling. Especially
mdx profited from a higher resolution. Those tasks required de-
tailed information of highly resolved muscle filament structures,
while especially sepsis worked better at downsampled resolution,
indicating that future imaging data could be recorded at higher
throughput for this task.

Prediction of active and passive force benefited from contrast
enhancement. This is also intuitively comprehensible when in-
specting the images visually, as the IQ for function assessment
is lower on average due to a more complex experimental setup[31]

(Supporting Information S1). On the contrary, the modification
of image intensities by contrast enhancement had a negative ef-
fect for the tasks mdx, muscle type and sepsis. This indicates that
not only the structure, but also the original intensity yields im-
portant information for these tasks and should not be artificially
modified.

In two of seven tasks, the selection of the spacing between
three representative slices was the most important decision.
Interestingly, for active and passive force prediction, SEMPAI
strongly profited from using slices from the periphery of the
muscle fiber (±20 μm), compared to using further slices in the
proximity of the muscle center (i.e., 1, 5, and 10 μm). This indi-
cates additional biological information for function assessment
in the muscle periphery in comparison to a sole evaluation of
the muscle center. Using configurations that employed 3D DaRe
generally provided an inferior predictive performance, and none
of these models was found among the best 100 for any task.

mdx was the only task for which localized properties were of
special interest, since the performance decreased by employing
random erasing.[48] We explain this technique, and how we use it,
in Methods. In brief, random erasing is an augmentation method
that regularizes by preventing a model from using only one or a
small number of image regions to learn. Random erasing of a few
image regions prevents this, similar to the concept of dropout[49]

for neurons. However, if an information occurs only locally, ran-
dom erasing leads to a situation where prediction is no longer
possible. To investigate this effect for mdx, we used the sample-
level decision explanation of SEMPAI. This confirmed that, in ad-
dition to 2D-VD, localized regions of twisted or damaged muscle
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Figure 2. Data acquisition, cross-study standardization, and value distribution of labels and priors in train, dev, and test set. A) Single muscle fibers were
dissected from murine muscle tissue. The data were annotated regarding pathologies and muscle type. In each case, 3D label-free second harmonic
generation (SHG) microscopy was performed, and morphological features, termed priors, were calculated. Muscle tissue was assessed for its function
by robot-assisted biomechanical force measurements. B) The SHG images are standardized with a dedicated image processing pipeline consisting of
resampling, denoising, registration, contrast enhancement and cropping of the images to a probable location bounding box. Within this standardization
process, the cross-sectional area (CSA) of the fibers is calculated. Function labels like active force or pCa50 are automatically computed from the raw
curves coming from the biomechatronics system. C) Distribution of priors (P) and labels (L) in train, development (dev) and test data after stratified
grouped data split. The distributions are normalized to standard score. Scale bar: 25 μm.
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Figure 3. Decision explanation regarding the self-enhancement process, i.e., model-level explanations (A), and regarding decision-relevant image vox-
els/pixels and priors, i.e., sample level-explanations (B). A) A random forest model learns the predictive performance of SEMPAI for a specific label as
a function of the configuration space. The resulting model is then analyzed by SHAP Tree Explainer that allows to estimate the individual contribution
of each configuration for each sample in units of the performance metrics (AUC/R2). Decisions are sorted top-to-bottom based on their mean absolute
SHAP values as a surrogate for the importance of the decision. Configurations are color-coded from weak to strong expression of a configuration (legend
in lower right). B) Attribution map of image (left) and priors (right) for one mdx sample. Colored voxels and priors are used by SEMPAI for this sample
to correctly predict mdx. The attribution of priors is computed simultaneously and shown with the same color code and scale.

fibers were especially used to predict mdx. An example of such a
finding is shown in (Figure 3B). When those image regions were
randomly erased, a loss of predictive performance was observed.
For all other tasks, however, more global properties seem to be
important for prediction, making the augmentation effect[48] of
random erasing more advantageous.

As demonstrated for mdx, SEMPAI provides a detailed sample-
level highlighting of important image regions, orthogonally to
the information given by priors. A collection of examples is
shown in Supporting Information S2. However, for a proper
quantitative evaluation, those observations must be validated in
a standardized manner, which is beyond the scope of this study.
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Figure 4. Overall results of SEMPAI, its sub-configurations and comparison with state-of-the-art (SOTA) methods. Performance metrics in train (for NN
training), dev (for meta-optimization) and test set (unseen data) for regression A), R2, and classification, AUC, tasks B).

In the future, an observer study based on SEMPAI could lead to
novel scientific insights.

In most of its decisions, SEMPAI autonomously chose a
stronger regularization. This was achieved by a strong prior inte-
gration, a low NN capacity, and also the lower dimensional 2.5D
DaRe.

2.5. Predictive Performance of SEMPAI’s Foundation Models and
Comparison to Benchmarks

To benchmark the performance of SEMPAI, we implemented
two state-of-the-art (SOTA) baselines: as univariate analyses still
reflect the standard approach in laboratory research, especially
in a low sample size setting, we select the best prior on the com-
bined train and dev set and use it as a univariate predictor for the
test set. In addition, to assess the performance of SOTA multi-
variate modeling, we use all priors and fit a statistical pipeline,

consisting of MRMR[50] feature selection, best subset selection.
and multiple linear/logistic regression, on the combined train
and dev set. The resulting model is applied for the prediction on
the test set. For fair benchmarking, as statistical models are more
severely regularized, potentially resulting in underfitting, we vary
the best subset selection information criterion (Akaike/Bayesian)
and the penalty of the regression (L2/elastic net: L1&L2) and
report the best performance on the test set. To understand the
merit of priors and images individually, we report the results
of SEMPAI when using only priors (SEMPAI PriorsOnly), i.e.,
when it does not have access to the images, and the opposite,
i.e., exclude trials that integrated priors (SEMPAI NoPriors). Fi-
nally, to test susceptibility of SEMPAI for non-optimal configu-
rations, we give the average performance of the 50 best models
(SEMPAI50).

The detailed results of SEMPAI, including train and dev set
performance, and the comparison with SOTA are shown in
Figure 4 and Table 3. In six of seven investigated learning tasks,
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Table 3. Overall SEMPAI results in train, dev, and test set; of SEMPAI sub-configurations, and comparison with SOTA methods (all results on the test
set if not denoted otherwise). ns: negative sign, i.e., worse than guessing.

Task SEMPAI
Train/Dev/Test

SEMPAI
NoPriors/
PriorsOnly

SEMPAI50 SOTA Multiv.
Model

SOTA Best
Prior

Mdx [AUC] 1.0/0.96/0.93 0.93/0.87 0.92 0.70 2D-VD: 0.78

Sepsis [AUC] 0.94/0.82/0.77 0.68/0.75 0.74 0.77 3D-SL: 0.77

Muscle Type [AUC] 1.0/0.95/0.93 0.93/0.86 0.88 0.67 2D-VD: 0.80

Active Force [R2] 0.82/0.66/0.37 0.14/0.31 0.13 0.03 2D-CAS: 0.20

Active Force/pCa [R2] 0.97/0.67/0.39 0.06/0.35 0.19 0.04 3D-CAS: 0.21

Passive Force [R2] 0.91/0.74/0.33 ns/0.08 0.16 0.23 2D-CAS: 0.20

pCa50 [R2] 0.45/0.07/0.24 ns/ns ns 0.01 3D-CAS: 0.19

SEMPAI’s foundation models were superior to SOTA models in
predicting the labels of the test set.

Active force was predicted by SEMPAI with R2 0.37, while
SOTA gave 0.20 using the prior 2D-CAS. The prediction of the bi-
ologically more interesting active force adjusted for pCa yielded
similar results with a performance of R2 0.39 by SEMPAI and
0.21 for SOTA by prior 3D-CAS. For passive force, SEMPAI again
achieved solid results with R2 0.33, while SOTA achieved 0.23 via
the multivariate model. For pCa50, SEMPAI was only slightly su-
perior, R2 0.24, to using the prior 3D-CAS, R2 0.19. Predictions
of force parameters were more susceptible to performance de-
crease for non-optimal configurations than those of pathologies
and muscle type, evident from the results for SEMPAI50, which
in the case of the force predictions showed inferior results com-
pared to the best trial.

As expected, the prediction for tasks with very small sample
size, pCa50 and passive force, was problematic for models with
large DOF or without strict regularization as shown by the pre-
dictive performance of DL (SEMPAI NoPriors), single-task Au-
toML (SEMPAI PriorsOnly) and, in case of pCa50, even a simple
multivariate statistical model with only few DOF. SEMPAI’s reg-
ularization by multi-task learning, integration of priors, and the
model selection based on the total meta-loss, however, resulted in
a SEMPAI model with slightly improved performance compared
to the best SOTA approach, the univariate predictor 3D-SL (one
DOF).

In three of seven tasks, SEMPAI PriorsOnly was superior to
SEMPAI NoPriors and especially achieved competitive perfor-
mance in classification tasks and for predicting active force. The
priors already provided the diagnostic information for classify-
ing the inflammatory phenotype sepsis, since no improvement
in predictive performance was observed by additional utilization
of DL on images.

In contrast, for the dystrophic phenotype mdx and the muscle
type, SEMPAI NoPriors yielded very strong models and, in the
case of mdx, these predictions were superior to those based solely
on priors. Thus, the performance of PriorsOnly or NoPriors mod-
els varied largely between tasks. In all tasks, however, SEMPAI
identified a level of prior integration on the dev set that led to a
good generalizability, i.e., the best predictive performance for the
test set.

Especially for the prediction of muscle function, synergistic
effects of combining prior knowledge with DL are observed, as

SEMPAI provided strongly improved performance compared to
DL without priors or models solely based on priors. These effects
may be interpreted as a DL-based prior (or hypothesis) refine-
ment.

3. Discussion

We developed a novel Self-Enhancing Multi-Photon Artificial In-
telligence (SEMPAI) and applied it on a total of 1,298 single mus-
cle fiber 3D SHG images. SEMPAI targets close interaction with
biomedical researchers. On the one hand, SEMPAI integrates,
tests, and refines prior knowledge or hypotheses of the domain
expert. On the other hand, SEMPAI gives systematic feedback
about influencing factors for optimal extraction of biologically
relevant information. The researchers can therefore use their do-
main knowledge as input to the method and receive comprehen-
sible and easy-to-interpret feedback as output.

The foundation models generated by SEMPAI were superior
to previous state-of-the-art (SOTA) biomarkers in predicting ac-
tive and passive muscle force, pCa50 for Ca2+-activated isometric
force, muscular dystrophy phenotype in the mdx mouse as well
as murine muscle type. To the best of our knowledge, deep learn-
ing (DL) was not yet applied to MPM image databases in single
muscle fiber research. For muscle research, DL was for example
applied to gene data from DMD patients[51] or to perform func-
tional evaluation of DMD on ultrasound images.[52] Most often,
DL in this context is used on clinical MRI data, e.g., for the iden-
tification of MRI biomarkers in smaller cohorts (N = 26),[53] for
image classification[54] or for the analysis of larger clinical cohorts
(N = 432).[55] However, ultrasound and MRI do not offer suffi-
cient resolution to understand DMD and the mdx model at the
level of individual muscle fibers. Here, MPM has the unique ad-
vantages of label-free image contrast and sub-cellular resolution.
In support of the microscopic approach, SEMPAI also showed
that the prediction of most of the prediction tasks benefit from
finer resolution.

Usually, imaging-based biomarker studies are either purely
based on priors, especially if the sample size is low like in
many clinical imaging studies, or novel DL architectures. How-
ever, meta-learning on our multi-study data indicates that a
prior integration, by varying degrees, in DL methods almost
always yielded the best predictive performance, especially for
the prediction of muscle function. Recent research, such as
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known-operator learning,[17] points in a similar direction and has
already shown impressive results by integrating known opera-
tors, e.g., subtasks with known analytic solutions in image re-
construction algorithms, into NNs to improve task performance,
while preserving the reliability of deterministic methods.[17]

However, the decision to integrate priors in known operator
learning is a design choice made before the experiments are con-
ducted. SEMPAI’s approach is agnostic and decides based on the
current task if priors are needed. The regularization by weak con-
straints in the form of auxiliary losses[1] is particularly interesting
as this variant of regularization, in addition to competitive predic-
tive performance for our data, has the benefit of being able to pro-
cess samples, in which priors are not available or not reliable due
to low IQ. SEMPAI has learned the priors during training and
implicitly uses them for inference of those cases even without
explicit prior computation. A similar concept of regularization,
but for dynamical systems, is applied in physics-informed neural
networks,[56] which regularize the learning of systems dynamics
by known differential equations. Priors are represented by the
differential equations that are incorporated into the NN training
by losses that use the deviation between predictions made by the
NN and those expected following the equations.

Most studies with DL develop/optimize their neural network
(NN) architecture for a fixed data representation (DaRe). SEM-
PAI, however, uses the simultaneous optimization of the DaRe
for biological knowledge discovery. Thereby, we showed that most
of the investigated learning tasks, as expected, benefit from a
higher image resolution. SEMPAI further showed that the mus-
cle periphery is especially important for the assessment of active
and passive force measurements or that the distinctive properties
of mdx dystrophic phenotype are rather learned locally, i.e., at spe-
cific locations of the fiber, than globally, i.e., widespread over the
whole fiber. However, prediction of mdx by SEMPAI is, to a cer-
tain extent, also possible using only global characteristics, which
is in concordance with recent literature.[57] The information pro-
vided by SEMPAI can be used to guide future experiments and
to refine microscopy hardware specifically for a pathology, e.g.,
by maintaining high resolution in the case of mdx or by decreas-
ing resolution in the case of sepsis to increase throughput. Com-
pared to SEMPAI, the recent ground-breaking meta-learning ap-
proach of Isensee et al. to the biomedical image segmentation
problem[3] is more technically driven by evolving its decision-
making around pre-processing and network topology. SEMPAI,
however, focuses its decision-making rather on integrating and
returning interpretable information regarding prior knowledge
and biology.

SEMPAI leverages shared patterns using multi-task learning.
The benefit of jointly learning multiple tasks has been shown
previously[26,58]; since it allows for a more robust prediction per-
formance even in those tasks for which only a few positive sam-
ples are available. Otherwise, with just a small number of exam-
ples insufficient for training a high-variance model from scratch,
relying on an already established prior would often be the only op-
tion for the lab scientist. Notably, joint learning is also interesting
for biological reasons, as shown in pan-cancer research,[59] since
the highlighting of common patterns between related patholo-
gies might be beneficial in the development of appropriate drugs.
In addition to joint learning of multiple tasks by the NN, it was
suggested that joint meta-learning, i.e., simultaneous optimiza-

tion of NN architecture and configurations over different tasks
might be beneficial.[12] This is explicitly utilized by SEMPAI as
well. One main objective of SEMPAI’s multi-task learning ap-
proach is to create foundation models, i.e., models trained on
a multitude of similar tasks, that are then only fine-tuned for a
novel task. Foundation models are mostly semi-supervised due
to the lack of labels, (pre-)trained on a variety of similar tasks
and adapted to the respective application by domain adaptation.
For this purpose, further experiments with single muscle fibers
and in animal models will be added to the existing database, and,
by combining priors and DL, robust foundation models will be
generated by SEMPAI. Those foundation models can then be
fine-tuned for MPM endoscopy,[60] thereby potentially translating
from fundamental research to the clinics.

As one limitation of this study, while intended as a general-
purpose tool, SEMPAI was only evaluated for muscle re-
search. In the future, we plan to expand SEMPAI to other
organ models, including existing gastroenterological[60-62] and
pneumonological[63] MPM databases and respective priors. Fur-
ther, SEMPAI did not yield a good predictive performance with
3D DL based on the underlying architecture. The phenomenon
that DL approaches using lower-dimensional “multi-view” data
representations are sometimes superior to DL methods working
directly on 3D data is well-known.[64,65] In addition, it is also con-
ceivable that SEMPAI recognized that the data amount was not
sufficient for a 3D analysis with significantly more degrees of
freedom, and hence regularized itself. However, we believe that
further conceptual developments for SEMPAI are required for
beneficial use of full 3D information. Another drawback comes
from the use of meta-learning. This is very computationally in-
tensive because a large number of models need to be trained.
Since we also utilize meta-learning for knowledge discovery, we
cannot prune the training as much by, e.g., hyperband pruning[66]

or other aggressive pruners. Also, performance estimation strate-
gies from the NAS domain do not seem reliable enough for
knowledge discovery. Thus, a single converged run takes between
three to four weeks on a system consisting of a Nvidia RTX3090
GPU and an Intel Core-i9 10850k CPU, see Methods. Compared
to NAS optimizations, e.g., on ImageNet, which have been per-
formed by industry with supercomputers and large costs, the
computation time is moderate with our approach. However, with
a further increase of the configuration space, e.g., by more adjust-
ments of the NN architecture as in NAS, we will have to resort to
more powerful hardware in the future.

In conclusion, in this work we present SEMPAI, an AI spe-
cific for laboratory and basic research. It uses meta-learning for
knowledge discovery, allows combining the hypothesis-driven ap-
proach of fundamental research with DL, and shows good predic-
tive performance even for small experiments where DL or ma-
chine learning in general would not be rationally applicable. It
is strongly regularized and prevents overfitting through several
external design choices and internal optimization choices. SEM-
PAI’s decision to integrate priors, utilize NN architectures of low
capacity, and use low-dimensional DaRe were internal optimiza-
tion choices for regularization. Its utilization of multi-task learn-
ing is an external design choice. We tested this approach with a
large exclusive dataset of 3D SHG images of single muscle fibers
with a multitude of pathologies and functional properties, which
result from over a decade of experiments. The meta-learning on
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a large database aims to build foundation models for different or-
gans, which could find future application when translating from
ex vivo[62] to in vivo experiments[60,61] or from animal models to
humans. Both through the systematic analysis of differences and
similarities between experiments and pathologies and the adapta-
tion of the method by meta-learning, as well as through the con-
tinuous expansion of its database, we expect a continuous self-
enhancement of the method.

4. Experimental Section
Selected Studies: a. A – inflammatory phenotype (sepsis vs. control).[30]

Sepsis was induced by caecal ligation and puncture (CLP) of 24-week-
old mice, and the extensor digitorum longus (EDL) muscle was extracted.
Maximum isometric tetanic forces were induced in the native whole mus-
cle via needle electrodes (Aurora Scientific) by averaging three consec-
utive tetanic stimuli (150 Hz stimulation frequency, 200 ms duration,
0.2 ms pulse width, 2 min rest intervals). Thereafter, the dissected and in
paraformaldehyd (PFA) fixed muscle tissue was imaged with a voxel size
of 0.2 × 0.2 × 0.5 μm, in a field-of-view of 100 × 100 μm with a stack depth
of typically 50 μm. Single fiber biomechanics was assessed using the previ-
ously described MyoRobot system to measure active force and reconstruct
the force-pCa curve. The 3D-SL and myofiber diameter were derived at the
beginning of the experiment.

b. B1 & B2 – active force & dystrophic phenotype (mdx vs. WT).[31] The
age of the mice was between 13 and 21 weeks for WT and between 27
and 91 weeks for mdx. Single muscle fiber segments were manually dis-
sected from the native EDL muscle and clamped into the MechaMorph
system for subsequent force measurements and SHG imaging. The fiber
was adjusted so that its SL was in the range of 2.2 – 3.1 μm as shown by
the MechaMorph system. Then, force measurements were performed to
assess active force parameters (see above). The maximum activation was
measured at a pCa of 4.92 in an undiluted highly activating solution (HA,
mM: Hepes 30, Mg(OH)2 6.05, EGTA 30, CaCO3 29, Na2ATP 8, Na2CP 10,
pH 7.2). Specific force, Hill-fit and pCa50 were determined. SHG imaging
was performed in two different scenarios (B1 & B2). In B1, a 3D SHG
image stack was recorded at each single force recording. In B2, the fiber
was only imaged in the relaxed state (pCa 9). Single fibers were z-scanned
using a 0.5 μm step size and at a voxel-size of 0.139 × 0.139 × 0.500 μm3.

c. C – passive force & dystrophic phenotype (mdx vs. WT).[31] The overall
procedure was the same as in the active force measurements described
above (see B1&B2). However, in this case the MechaMorph system was
used to access passive force parameters. At each step of force recording,
an SHG 3D image stack of the fiber was recorded before proceeding to the
next stretch step.

d. D – muscle type (EDL vs. SOL) & dystrophic phenotype (mdx vs WT)
in tissue. The investigated mice were 9 months of age. Whole muscle tis-
sue from EDL and diaphragm was fixed in 4% PFA and transferred in PBS
on dry-ice for transportation. Each muscle was cut longitudinally at the
highest cross-sectional area. Small cryo-cuts of 10 μm were performed
and collected on microscope slides. Each slice was further investigated
by SHG microscopy. VD, CAS, and SL were derived. In some cases (N =
222), images were recorded from whole muscle tissues. In these cases,
single fibers were digitally cropped from the 3D image stacks and after-
wards standardized. Force recordings were not performed here.

Label-Free SHG Imaging and Functional Force Measurements: a. Label-
free SHG imaging. Label-free SHG imaging was performed on an in-
verse multiphoton microscope (TriMScope, LaVision BioTec, Bielefeld,
Germany) with a mode-locked fs-pulsed Ti:Sa laser (Chameleon Vision II,
Coherent, Santa Clara, CA, USA). The laser was tuned to a wavelength of
810 nm, generating the second harmonic generation signal at 405 nm. The
laser was focused into the sample by a water immersion objective (LD
C-Apochromat lens – 40x/1.1/UV–vis-IR/WD 0.62, Carl Zeiss, Jena, Ger-
many), and the generated SHG signal was detected by an ultra-sensitive
photo multiplier tube (PMT) (H 7422–40 LV 5 M, Hamamatsu Photonics)
in transmission mode to target the SHG of myosin-II.

b. Functional force measurements via the MyoRobot system.[37,38] The
MyoRobot was a biomechatronics system for automated assessment of
biomechanical active and passive properties as previously described.

c. Functional force measurements via the MechaMorph system.[31] The
MechaMorph was a custom-engineered device for combined structure–
force measurements. A small measurement chamber could be inserted
onto the microscope stage below the objective. Single muscle fiber seg-
ments could be mounted between a force transducer and a software-
controlled voice coil actuator (VCA) that allows the MechaMorph to per-
form subsequent isometric force measurements and structural imaging
via SHG microscopy.

Priors: a. Cosine angle sum (CAS). The CAS quantifies the angular devi-
ation of myofibrillar bundles from the main axis.[46] This well-established
parameter was deduced from 2D planes of SHG images by a software
algorithm (2D-CAS).[46,67,68] The CAS describes disturbances in muscle
myofibrillar architecture that have been shown to correlate with muscle
weakness.[33] For that an upgraded version for 3D assessment of CAS (3D-
CAS) was developed recently.

b. Vernier density (VD). Y-shaped deviations from the regular sarcomere
pattern in SHG images are referred to as “verniers”. The number of these
verniers was then normalized to the fiber area to obtain the VD. Values
close to zero represent fibers, where all myofibrils were perfectly in register,
while larger values indicate deviations. The VD can either be generated
manually or by a custom-designed software tool.[68]

c. Sarcomere length (SL). With the software tools for MechaMorph and
MyoRobot, the SL was recorded live.

d. Smart Cross-Sectional Area (CSA) computation. In the current study,
a new method for quantifying the CSA of single muscle fibers is reported,
which had been developed for a standardized solution of the CSA in all im-
age data sets. First, a binarization of the images was performed by a simple
Otsu threshold on the images. An oriented bounding box algorithm[69]

was applied to the binarized fiber to orient the fiber vertically. The top
and bottom 10 slices were excluded from quantification. Then, three al-
gorithms were combined with each other, and an outlier detection was
applied to increase the stability of the method.

I. Algorithm 1 – exact counting: Since the binarized fiber was now ar-
ranged from top to bottom, morphological operations 2D opening
and closing were applied to each slice to close holes and obtain a
compact segmentation. After application, the number of pixels in each
slice was counted and averaged.

II. Algorithm 2 – principal component-based: Instead of morphological
operations, a 2D principal component analysis (PCA) of scikit-learn
was applied and the obtained maximum and minimum radii were
used to determine the area of an ellipse for each slice. The results
were averaged over the slices.

III. Algorithm 3 – elliptic envelope-based: Instead of morphological oper-
ations, an elliptic envelope (EE) was calculated with a contamination
of 0.2. The area of the EE was calculated for each slice and the results
were averaged across slices.

The mean results of two algorithms, which show higher concordance,
were used. The averaging and outlier removal compensates for potential
weaknesses of the algorithms due to varying IQ. The results agreed well
with visual assessment.

Implementation of cross-study standardization and data split: The pipeline
was written in Python (v3.7.7). For studies with low SNR, a median filter
of size 1 μm was applied. An intensity threshold for the background by
Otsu’s thresholding was defined. Then, voxels with intensities below this
threshold intensity were set to 0 (background). The contrast enhancement
algorithm MCLAHE[47] was applied with adaptive histogram range. The
registration toolbox Elastix[70] was used to register the muscle fibers to a
reference fiber, which exhibits a canonical structure and perfectly vertical
orientation. A rigid multi-scale Euler registration with 600 iterations was
used, automatic scale estimation, center of gravity initialization, 32 bins,
6 scales, and grid-adaptive step size. The transformation was then also
applied to the non-enhanced fiber. Each standardized fiber was normal-
ized to a sample-wise standard score. Force measurements were extracted
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directly from the TDMS curves coming from the instruments, entered
the data frame and normalized by the CSA of the associated fiber. The
standardization pipeline was highly automated, and the steps were doc-
umented by an automatically generated SEMPAI labbook to identify and
minimize errors associated with standardization or data management.

For data splitting in train (2/4), dev (1/4) and test (1/4) set, the data
were both stratified and grouped. The stratification was needed to had
sufficient data with a certain label in all sets. Continuous functional la-
bels were median-dichotomized into “high” and “low” values, e.g., spe-
cific force “high” for stratification. However, those dichotomized labels
were only used for stratification and not as a learning task. This stratifi-
cation also ensures that class distributions were balanced over train, dev,
and test set. The labels were grouped according to muscle bundle, single
fibers from one bundle were therefore, not split between train, dev and test
set, preventing information leakage.

Implementation of SEMPAI configuration-space and self-enhancement.
SEMPAI was implemented in Python (v3.8.1), its NN parts in PyTorch
(v1.11, CUDA v11.3). For meta-learning, the multi-objective optimization
algorithm NSGA-II[29] from the Optuna[71] package was leveraged with
population size of 50, without mutation probability, with a crossover prob-
ability of 0.9, swapping probability of 0.5, and a fixed seed of 42.

The losses of labels and priors were weighed against each other by un-
certainty weighing.[28] For this purpose, additional learnable parameters
were introduced, that weigh the losses against each other. The loss is,

therefore, determined by:  =
∑

i
(
L,i

𝜎
2
L,i

+ log𝜎L,i) +
∑

j
(
P,j

𝜎
2
P,j

+ log𝜎P,j) with

labels i of set L and priors j of set P, and the learnable uncertainties associ-
ated with each label 𝜎L,i and prior 𝜎P,j. For the 2.5D DaRes, three 2D slices
of the 3D images were fed in three channels of a 2D EfficientNet. The cen-
ter slice of the cropped bounding box was used and two further peripheral
slices, whose distance from the center slice was optimized by SEMPAI.
For NN with branches, i.e., SEMPAI Branches and AuxLosses&Branches, a
wrapper was built for the respective NN to introduce the priors in the fully
connected layers.

For AutoML based on priors, i.e., SEMPAI PriorsOnly, the Tree-based
Pipeline Optimization Tool (TPOT)[72] was employed. This algorithm com-
bines identification of feature selection and suitable classifiers or regres-
sors with Pareto optimization. 250 generations was used, a population
size of 200, and grouping of the fibers. The combined train & dev set was
forwarded to TPOT for training, and the internal cross-validation (CV) was
set to two-fold to have a comparable data split ratio to the other compo-
nents of SEMPAI. TPOT was restricted to methods with class probability
output. The performance metric, e.g., AUC or R2, of the internal CV was
reported to SEMPAI and evaluated as a meta-loss, i.e., the model selected
by SEMPAI can be a prior-only model based on AutoML.

The total meta-loss was a weighted sum of each label. The labels were
weighted as a trade-off between sample size and importance of task, ac-
cordingly we set weights w = [mdx: 1.0, sepsis: 1.0, muscle type: 0.5, ac-
tive force: 1.0, active force/pCa: 1.0, passive force: 1.0, pCa50 = 1.0]. In
the trade-off between exploration and exploitation, multi-objective opti-
mization algorithms were lending toward exploration as the performance
for different tasks must be optimized. Thus, the configuration space was
sufficiently sampled although very unpromising regions of configuration
space trials were still under-sampled. Selecting a criterion time for early
termination of the trials was not trivial for multi-objective optimization tri-
als. Therefore, a very non-conservative criterion was selected. Accordingly,
SEMPAI does not compare trials for termination (and save computation
time) as in more modern methods like Hyperband pruning.[66] The total
meta-loss was smoothed by computation of the moving average of the last
10 epochs. A trial was terminated when the total meta-loss did not decrease
for 50 subsequent epochs. The early stopping criterion was set active af-
ter the initial 75 epochs, resulting in at least 125 epochs performed per
trial. The lowest meta-loss for each respective task was used to select the
respective model for the task. For tasks with scarce data (pCa50, passive
force), however, the total meta-loss was used for model selection.

SEMPAI offers sample-level and model-level decision explanations.
For a more detailed explanation of the sample-level explanation, the ex-
ample in Figure 3 was used. The sample-level explanation uses Deep

SHAP[15]. The explanations were adapted to the DaRe and prior inte-
gration variants. For the prior integration variants with branches, where
the priors were fed as branches into the fully connected layer of the
respective NN architecture, the importance of these priors was calcu-
lated simultaneously to the importance of the voxels of the image. In
Figure 3, it can be seen that SEMPAI uses the twisted image regions and
the vernier density to correctly classify this sample as dystrophic. In ad-
dition, a model-level explanation was provided by SEMPAI: to provide
more insights about preferable individual configurations for each target
label, SHapley Additive exPlanations (SHAP)[15] values were computed.
For this purpose, a random forest was trained to predict performance
metrics of the dev set based on the configuration space. The SHAP Tree
Explainer[35] was utilized, which was explicitly designed for tree-based al-
gorithms like the fitted model. The stability of the results by fitting mul-
tiple forests with different random initializations was verified and ensem-
ble sizes (i.e., number of trees). Manually inspecting each resulting plot of
two representative labels (mdx and active force/pCa) gave rise to the same
interpretation.

For an application of SEMPAI to other data bases, e.g., other organs,
corresponding handcrafted features must be provided as priors, or their
computation must be integrated into SEMPAI. Ideally, these were known
biomarkers or good hypotheses. A dataframe must be created for train,
dev, and test set, containing the labels, the priors, and the paths to the
standardized images. Then the meta-parameter space must be defined for
SEMPAI, i.e., which configurations regarding DaRe, prior integration, and
NN architecture will be tested and optimized.

Rationale for Standardization and Configuration Space: a. Standardiza-
tion: Standardization was intended to minimize technical variance, which
is usually present in biomarker research.[73] This technical variance can
even lead to wrong conclusions of an AI system.[74,75] To reduce the im-
pact of technical variance, The image was slightly denoised and resam-
pled to uniform isotropic voxel size. Cropping reduces the dimensionality
of the images, and DL can focus only on relevant regions. The alignment
of fibers via registration helps to minimize the bounding box and can in-
crease the convergence of the learning process, because CNNs, such as
the employed EfficientNet, are not rotation invariant.

b. Configuration space:

• The benefit of contrast enhancement for visual recognizability of struc-
tures was undisputed. However, it was not yet understood if this en-
hancement adds value for training an AI. Therefore, SEMPAI validates
this explicitly and exemplarily for the MCLAHE[47] algorithm.

• Random erasing[48] regularizes the learning process by enforcing the
use of multiple image regions for inference, theoretically resulting in
a more robust prediction. Random erasing can enforce regularization
since it prevents the model from overfitting specific image regions.
Thus, the model needs to use several different image regions and can
thus become stable and less prone to overfitting to localized noise or
other undesired effects. In the case of localized biologically-relevant im-
age properties, however, deleting this location naturally leads to a mis-
evaluation of the image and a decrease in predictive performance. We
thus use random sampling as a measure for the importance of localized
image features.

• Downsampling and multi-view representations may support learning
by minimizing overfitting. It was scientifically interesting to understand
the importance of resolution for learning phenotypes and function,
since microscopy research targets finer resolution (lower pixel size),
often at the expense of reduced throughput. SEMPAI’s decision w.r.t.
down-sampling to elaborate how important the image resolution was
for a given learning task was interpreted. In analogy, whether to use
3D data directly for learning was evaluated, or to draw representative
2D slices. Whether using lower dimensional DaRe as NN input via
downsampling (reduced voxel size) and sub-sampling (2.5D vs 3D),
was tested improves convergence. The benefit of dimensionality reduc-
tion in DL was controversial.[76,77] Choosing the spacing of the repre-
sentative slices was also of biological interest. It allows interpretation
of where relevant information was located in 3D, i.e., by interpretably
sub-sampling a lower-dimensional DaRe from a higher dimensional
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volume. By this, the origin of the biological information can be nar-
rowed down.

• To test the importance of priors, several prior integration methods was
used. Besides both extremes, NoPriors and the PriorsOnly, priors as aux-
iliary tasks was used, as branches or as a combination of the latter two,
to define a scale of prior integration from “weak to strong”. By defin-
ing the priors as auxiliary tasks, they were predicted simultaneously to
the labels. Thus, the filter kernels of the NN evolve to predict these
auxiliary tasks as well. By using these priors as auxiliary tasks, the net-
work can leverage domain knowledge to learn better representations
of the data. Since the prior was only indirectly available for learning a
label, it as weak prior integration was considered. With the branches
approach, the priors were passed on directly to the fully connected lay-
ers of the NN, i.e., theoretically, the NN can completely dispense with
the additional image information, which was why it as strong prior in-
tegration was considered. By adding a prior, i.e., handcrafted feature,
branch to the fully connected layer, the network can learn to combine
the learned features of the CNN with the priors, which can potentially
improve the accuracy and generalization of the model. This approach
can be particularly useful in scenarios where the input data was noisy
or incomplete, and the handcrafted features can provide additional in-
formation to the network. Multi-branch approaches have also recently
been shown to have positive convergence properties[78] for learning.
The combination of both methods as an even stronger prior integra-
tion was defined. Finally, the use of priors with AutoML, i.e., without
images and DL, was defined as the “maximum” of the prior integration
scale. Such feature-based ML approaches can occasionally outperform
DL.[79] In the optimization of SEMPAI, the added value of the priors
for the learning process was evaluated. If models with the hypothesis-
driven priors were superior to models without, or if a prior-only model
shows the same performance as the best DL model, the hypothesis that
the prior describes the state of the label well can be considered true. The
researcher can thus test hypotheses and these were verified by SEMPAI
and, in the case of models with DL, also refined. The biological infor-
mation of the prior knowledge was evaluated.

• Further adaptations: NN-specific parameters were more technical and
less interpretable but need to be adapted to prior integration and DaRe
at hand to achieve a global optimum. The NN capacity was adjusted,
as it must be adapted to the available amount of data and the com-
plexity of the learning task. Also, further NN properties like batch size,
learning rate, momentum, and optimizer must be fine-tuned. Gradient
clipping, i.e., restricting the gradients, had been theoretically shown to
accelerate convergence[80] and its benefit was evaluated. Also, the sam-
pling of the data can be modified by imbalance sampling. The employed
augmentation uses rotations, shifts, and additive noise patterns, which
were identified as variations in the data after inspection of the images by
domain experts. Thus, this step can also be interpreted as prior knowl-
edge integration. Augmentation introduces invariance toward the ap-
plied modifications to the learning process.

Computation Details: SEMPAI computed 19 days on a workstation
equipped with NVMe SSD, Nvidia RTX 3090 GPU and Intel Core-i9 10850k
CPU (10 cores of 3.6 GHz), resulting in a total of 1,500 evaluated trials.
To decrease the computational cost for evaluating 2D configurations, the
slices were loaded by reading parts of the memory-mapped 3D volume.
For (3D) augmentations, some operations employ TorchIO,[81] and where
possible, augmentations were computed on the GPU. Automated mixed
precision (AMP) of PyTorch was used in addition to multiple workers and
pinned memory. To be able to use sufficiently large batches for 3D data,
SEMPAI utilizes gradient accumulation.
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